Towards Foundation Database Models

Systems Research @ Google

Carsten Binnig & Johannes Wehrstein (work done while at Google)

Co-Authors:

A Prominent Direction: Learning DB Tasks

Simplifying assumptions: uniform data, no correlations

Cost Model

Learned Cost Model

No simplifying assumptions: learn from real characteristics

Classical DB Component

Learned DB Component

Learned approaches have shown to significantly improve Database Performance

Learned DB Tasks: Wide Applicability

Learned approaches have been used successfully for a large spectrum of database tasks

Initial Approach for Learned DB Tasks

Instance-specific Learning: Learn a Model for a specific Dataset & Task

Example: Learn an instance-specific Cost Model

Inference Use Model for new Queries (e.g., predict runtime) over same Dataset

Main Issue of Instance-specific Learning

High overheads at the scale of the cloud DBs which host 1000's of customer datasets

Our Vision: Foundation Database Models

The Learning Landscape & Overheads

Multi-Task

Train-Overhead: O(#Datasets)

Train-Overhead: O(1)

Single-Task

Train-Overhead: O(#Tasks × #Datasets)

Train-Overhead: O(#Tasks)

Single-Dataset

Multi-Dataset

What do Models learn from?

Observation: Models for different tasks share similar information (data, logical /physical query plans, ...)

Core Idea: Composable Pre-trained Models

Key Idea 2 - Play Lego:

Combine Experts +
A Shallow Model
(Downstream Task)

Predicted Cardinality

Simple Regression Model for CE on TPC-H

Predicted Cost

Simple Regression Model for Cost Est. on IMDB

Low overhead for downstream model

Pre-trained experts (no overhead)

How Experts work?

Key Idea 1 – Decompose:

Small Pre-trained Experts (Task- & Datasetindependent)

Small Pre-trained Experts

Data Expert

Logical Plan Expert

Physical Plan Expert

Other Experts

What do individual Experts learn?

How to pre-train such experts? Let us look at an example!

How to Pre-train a Data Expert?

diverse set of tables

Core Idea: Composable Pre-trained Models

How to play Lego?

Key Idea 2 - Play Lego: Combine Experts +

A Shallow Model (Downstream Task)

Predicted Cardinality

Predicted Cost

Simple Regression Model for Cost Est. on IMDB

Low overhead for downstream model

Pre-trained experts (no overhead)

Key Idea 1 – Decompose:

Small Pre-trained Experts (Task- & Dataset-independent)

Small Pre-trained Experts

Data Expert

Logical Plan Expert

Physical Plan Expert

Other Experts

How to combine Experts for Tasks?

Experts are trained & used in a "stacked" manner to solve downstream tasks

Does it work? Initial Evaluation

... more tasks in the paper (e.g., AQP)

Instance-

Specific Models

Evaluation on 19 real-world datasets

Task 1: Card. Est (CE)

Task 2: Runtime Est

	Ours	Ours (FT)	PG	DeepDB	MSCN
Q-error	2.12	1.69	1.98	1.83	1.68
(Median)					
Q-error	92.92	26.08	294.15	152.23	3120
(95th)					

Multi-Dataset Model

	Ours	Ours (FT)	ZS Cost	PG Cost	
Q-error	1.87	1.5	1.08	6.44	
(Median)					
Q-error	10.76	6.83	1.7	19.73	
(95th)					

Future Directions: This is just the beginning

More Tasks / Experts

Hardware Expert (e.g. to enable cost prediction across hardware)

Self-Supervised Expert Training

Learning representations with Auto-Encoder model

Beyond Database Systems

Foundation *System* Models (OSs, ML Systems e.g. Tensorflow)