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A Prominent Direction: Learning DB Tasks
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Learned approaches have shown to 

significantly improve Database Performance
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Learned DB Tasks: Wide Applicability

Learned approaches have been used successfully 

for a large spectrum of database tasks
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Initial Approach for Learned DB Tasks

Instance-specific Learning: Learn a Model for a specific Dataset & Task

Example: Learn an instance-specific Cost Model
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Main Issue of Instance-specific Learning
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High overheads at the scale of the cloud DBs 

which host 1000’s of customer datasets
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Our Vision: Foundation Database Models
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The Learning Landscape & Overheads

Single-Task

Multi-Task

Single-Dataset Multi-Dataset

Instance-specific DB Models Zero-shot DB Models

Multi-task DB Models Foundation DB Models

Train-Overhead: 

O(#Tasks × #Datasets)
Train-Overhead: 

O(#Tasks)

Train-Overhead: 

O(#Datasets)
Train-Overhead: 

O(1)



How to realize a Foundation Database Model?



What do Models learn from?
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Small Pre-trained Experts 

Core Idea: Composable Pre-trained Models

Data Expert Physical Plan Expert Logical Plan Expert Other Experts 

Key Idea 1 – Decompose: 

Small Pre-trained Experts 

(Task- & Dataset-

independent) 

Key Idea 2 - Play Lego:

Combine Experts + 

A Shallow Model

(Downstream Task) 
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What do individual Experts learn?

Data ExpertTable Data Table Representation 

(High-dim. vector)

How to pre-train such experts? Let us look at an example!
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Population Area Density

1M 248 km2 4,000

2M 60 km2 33,333

100K 100 km2 1,000

… … …

Population Area Density

0.1 0.248 0.40

0.1 0.60 0.33

1 0.100 0.1

… … …

How to Pre-train a Data Expert? 

Table (Cities)

Pre-Train Task 1:

Predict Col Distribution

From Table Repr.

Pre-Train Task 2:

Learn Row Corr. 

From Table Repr.
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Task-independence? 

General Pre-train Tasks

Dataset-independence? 

Relative Enc (0-1)



Small Pre-trained Experts 

Core Idea: Composable Pre-trained Models

Data Expert Physical Plan Expert Logical Plan Expert Other Experts 

Key Idea 1 – Decompose: 

Small Pre-trained Experts 

(Task- & Dataset-

independent) 

Key Idea 2 - Play Lego:

Combine Experts + 

A Shallow Model

(Downstream Task) 

Predicted Cardinality Predicted Cost

+ +

Simple Regression Model 

for  CE on TPC-H

Simple Regression Model 

for  Cost Est. on IMDB

Pre-trained

experts

(no overhead)

Low overhead 

for down-

stream model

How to play Lego?



How to combine Experts for Tasks?

Experts are trained & used in a “stacked” manner 

to solve downstream tasks

Downstream Task
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Initial Evaluation & What's Next?



Does it work? Initial Evaluation

Task 1: Card. Est (CE)

Task 2: Runtime Est

… more tasks in the 

paper (e.g., AQP)

FT = Fine-tuned 

on one data set

CE across data 

sets

Data

Physical Plan
+

Data
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+

Instance-

Specific Models

Multi-Dataset

Model

Evaluation on 19 real-world datasets



Future Directions: This is just the beginning

More Tasks / 

Experts

Hardware Expert (e.g. to 

enable cost prediction 

across hardware)

Self-Supervised 

Expert Training

Learning representations 

with Auto-Encoder model

Beyond 

Database Systems

Foundation System Models 

(OSs, ML Systems e.g. 

Tensorflow)
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